خانه / فنی و مهندسی / مواد / پایان نامه کارشناسی ارشد با عنوان  بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون­های فلزی

پایان نامه کارشناسی ارشد با عنوان  بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون­های فلزی

 

 بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون­های فلزی

وزارت علوم، تحقیقات و فناوری

دانشگاه ملایر

دانشکده فنی و مهندسی- گروه مواد

پایان­­نامه کارشناسی ارشد مهندسی مواد (سرامیک)

 بررسی خواص ساختاری و فتوکاتالیستی نانوذرات تیتانیای دوپ شده با کاتیون­های فلزی

 

 

چکیده:

در این تحقیق، مقادیر مختلف از پودر تیتانیای دوپ شده با سریم ( با ۵-۲-۱-۵/۰ درصد مولی Ce) و تیتانیای دوپ شده با قلع (با ۱۵-۱۰-۵-۱ درصد مولی Sn) آماده شد. همچنین نمونه­های مختلف نانوذرات TiO2 با دوپ همزمان Sn و  Ce (2-1-5/0 درصد مولی Ce و ۱۰-۵-۱ درصد مولی Sn) به­روش سنتز ساده سل-ژل با استفاده از نیترات سریم ۶ آبه به­عنوان پیش­ماده سریم، کلرید قلع ۲ آبه به­عنوان پیش­ماده قلع و تیتانیوم بوتوکساید(TBT) به­عنوان پیش­ماده تیتانیوم تهیه شد. (دمای کلسیناسیون برای نمونه­ها با دوپ همزمان در محدوده­ی C˚۹۷۵-۴۷۵ بودند.)

بررسی و مطالعه خواص ساختاری،  فتوکاتالیستی، نوری، عنصری و شیمیایی نمونه­های تهیه شده با استفاده از روش­های مختلف مانند DLS، TG-DTA، XRD، FE-SEM، EDX، BET،XPS  و FT-IR ارزیابی شد.

نتایج XRD نشان می­دهد که اضافه کردن ناخالصی در کریستالیته و اندازه ذرات TiO2 تاثیر زیادی دارد. متوسط اندازه کریستالیت نمونه­ها با استفاده از فرمول شرر محاسبه شد همچنین پارامترهای سلول واحد تعیین گردید. دوپ قلع در شبکه تیتانیا منجر به تشویق استحاله فازی آناتاز به روتایل گردیده است در حالی که دوپ سریم در شبکه تیتانیا از استحاله فازی آناتاز به روتایل جلوگیری کرده است. مشخص شد که فتوکاتالیست تهیه شده از ذرات کروی شکل تشکیل شده است که اندازه ذرات آن از نمونه بدون دوپنت کوچک­تر بود. لبه جذب نوری نانوذرات فتوکاتالیست تیتانیا تهیه شده با دوپ همزمان در محدوده نور مرئی مشاهده شد و توانایی بالایی برای تخریب متیلن بلو تحت تابش نور مرئی از خود نشان دادند. نتایج نشان داد بهترین خواص فتوکاتالیستی نانوپودرها با دوپ همزمان Ce و Sn  تحت تابش نور مرئی مربوط به نمونه­ی TSC6 می­باشد. همچنین نمونه­ی همراه با دوپ همزمان دارای خواص فتوکاتالیستی بهتری در مقایسه با نمونه­­های تک دوپنت بود. طیف جذب تیتانیای دوپ شده با Sn و Ce دارای شیفت پیک قابل ملاحظه­ای به­سمت ناحیه مرئی بود. این امر را می­توان به ایجاد یک تراز جدید در وسط باند ممنوعه TiO2 نسبت داد. علاوه بر این، دوپ سریم می­تواند سبب کند شدن فرآیند بازترکیب الکترون و حفره در تیتانیا گردد. باتوجه به بررسی XPS، عنصر Ti عمدتاً به­صورت شیمیایی Ti4+ وجود داشت. Ce به­صورت ترکیبی از حالت­های اکسیداسیون Ce3+ و Ce4+ یافت شد.

 

 

 

 

فهرست

 

عنوان                                                                                                                                        صفحه

فصل اول: مقدمه.. ۱

۱-۱ پیشگفتار. ۲

۱-۲- تاریخچه فتوکاتالیست. ۲

۱-۳- دلایل تولید فتوکاتالیست جهت کاربرد در امواج مرئی. ۵

۱-۳-۱- توانایی فعال شدن با پرتوهای مرئی. ۵

۱-۳-۲- پایداری خاصیت فتوکاتالیستی. ۶

۱-۳-۳- غیر سمی بودن. ۶

۱-۳-۴- قیمت مناسب. ۷

۱-۴- هدف از انجام تحقیق. ۷

فصل دوم: مروری بر منابع مطالعاتی و مبانی نظری.. ۹

۲-۱- ویژگی­های نیمه­رساناها. ۱۰

۲-۱-۱- حامل­های بار در نیمه­رساناها. ۱۰

۲-۱-۲- انواع نیمه­رساناها. ۱۱

۲-۱-۲-۱- نیمه­رساناهای ذاتی. ۱۱

۲-۱-۲-۲- نیمه­رساناهای غیرذاتی. ۱۱

۲-۲- خواص یک فتوکاتالیست مناسب. ۱۲

۲-۲-۱- فتوکاتالیست­های بررسی شده. ۱۳

۲-۳- تیتانیا. ۱۴

۲-۳-۱- خواص فیزیکی و شیمیایی دی­اکسید تیتانیوم. ۱۵

۲-۳-۲- ساختارهای دی­اکسید تیتانیوم. ۱۵

۲-۳-۳- خاصیت فتوکاتالیستی تیتانیا. ۱۸

۲-۴- اصول اولیه فرآیندهای فتوکاتالیستی. ۱۹

۲-۴-۱- تهییج فوتونی از طریق باندگپ. ۲۰

۲-۴-۲- موقعیت­های لبه باند. ۲۲

۲-۴-۳- اثرات اندازه کوانتومی. ۲۴

۲-۴-۴- ترکیب مجدد جفت­های الکترون- حفره. ۲۴

۲-۴-۵- نقش الکترون­ها و حفره­های تولید شده در اثر پرتوتابی در فتوکاتالیست.. ۲۵

۲-۴-۶- اکسیداسیون فتوکاتالیستی ترکیبات آلی. ۲۶

۲-۵- پارامترهای موثر بر افزایش خاصیت فتوکاتالیستی TiO2 در نور مرئی.. ۲۷

۲-۵-۱- شکل و اندازه ذرات. ۲۸

۲-۵-۲- ساختار کریستالی. ۲۹

۲-۵-۳- بمباران یونی. ۳۰

۲-۵-۴- تکنیک های ترکیب. ۳۱

۲-۵-۵- اضافه کردن یون­های غیر فلزی. ۳۲

۲-۵-۶- آلاییدن نیمه­هادی­ها با انواع یون­های فلزی. ۳۳

۲-۶- تاریخچه کاربردهای تیتانیا. ۳۶

۲-۷- کاربردهای تیتانیا. ۳۷

۲-۷-۱- فوتوکاتالیز کردن. ۳۹

۲-۷-۱-۱- کاربردهای فتوکاتالیستی. ۳۹

۲-۷-۱-۱-۱ تجزیه نوری آب. ۳۹
۲-۷-۱-۱-۲ ضدعفونی. ۴۰
۲-۷-۱-۱-۳ تصفیه هوا. ۴۰

۲-۷-۱-۱-۴ تصفیه آب. ۴۱

۲-۸- فرآیند سل- ژل. ۴۲

۲-۸-۱- اصول فرآیند سل-ژل. ۴۳

فصل سوم: فعالیت­های آزمایشگاهی و روش کار. ۴۵

۳-۱- مواد اولیه مورد مصرف و خواص آن­ها. ۴۶

۳-۲- روش سنتز. ۴۷

۳-۳- آماده­سازی سل. ۴۸

۳-۳-۱- سل تیتانیا. ۴۸

۳-۳-۲- سل قلع و سریم. ۴۸

۳-۴- سنتز نانوذرات تیتانیا به­همراه افزودنی. ۴۹

۳-۵- کد گذاری نمونه‏ها. ۵۰

۳-۶- روش های بررسی خواص. ۵۱

۳-۶-۱- بررسی خواص فیزیکی سل – تکنیک پراش نوری DLS. 49

3-6-2- بررسی استحاله حرارتی. ۵۲

۳-۶-۳- آنالیز سطح ویژه(BET)  Adsorption/Desorption Porosimetry. 53

3-6-4- بررسی فازهای کریستالی. ۵۳

۳-۶-۵- ارزیابی مورفولوژی و ریزساختار. ۵۵

۳-۶-۶- طیف­ سنجی مادون قرمز با تبدیل فوریه. ۵۵

۳-۶-۷- طیف نگاری فتوالکترونی پرتو ایکس (XPS) 56

3-6-8- بررسی خواص نوری و محاسبه‏ی انرژی پهنای نوار ممنوعه‏ ۵۷
۳-۶-۹- بررسی رفتار فتوکاتالیستی. ۵۸

۳-۶-۹-۱- متیلن بلو. ۵۸

۳-۶-۹-۲ نحوه انجام آزمایش فتوکاتالیستی. ۶۱

فصل چهارم: نتایج و بحث.. ۶۲

۴-۱- نتایج حاصل از تهیه سل. ۶۳

۴-۲- نتایج آنالیز TG-DTA.. 65

4-3- نتایج اثر افزودنی بر خواص نانوذرات تیتانیا. ۶۷

۴-۳-۱- نتایج و تحلیل آنالیز فازی نانو ذرات T-x mol% Ce. 67

4-3-2- نتایج و تحلیل آنالیز فازی نانو ذرات T-x mol% Sn. 70

4-3-3- نتایج و تحلیل آنالیز فازی نانو ذرات  y mol%Ce- x mol%Sn  T- 72

4-3-4- نتایج و تحلیل آنالیز UV-Vis 75

4-3-5- بررسی تاثیر دمای کلسیناسیون بر فازهای کریستالی. ۷۶

۴-۳-۶- بررسی تاثیر دمای کلسیناسیون روی خواص فتوکاتالیستی   ۷۹

۴-۳-۷- اثر زمان کلسیناسیون بر فازهای کریستالی. ۸۰

۴-۳-۸- بررسی طیف  UV-Vis و محاسبه باند ممنوعه. ۸۱

۴-۳-۹- اثر زمان تابش بر بازده تجزیه فتوکاتالیستی. ۸۷

۴-۳-۱۰- تصاویر میکروسکوپ الکترونی روبشی. ۸۹

۴-۳-۱۱- نتایج حاصل از آنالیز عنصری EDX.. 91

4-3-12- نتایج و تحلیل آنالیز سطحی XPS. 91

4-3-13- نتایج و تحلیل آنالیز BET. 97

4-3-14- نتایج و تفیسر طیف­های FT-IR. 98
فصل پنجم:  نتیجه­گیری نهایی و پیشنهادها. ۱۰۱

۵-۱- نتیجه­گیری نهایی. ۱۰۲

۵-۲- پیشنهادات و کارهای آینده. ۱۰۳

مراجع.. ۱۰۴

 

 

فهرست شکل­ها

 

عنوان                                                                                                           صفحه

شکل ۲-۱: نیمه­رسانای نوعn  و نیمه رسانای نوع p. 12

شکل ۲-۲: موقعیت نوار نیمه­رساناهای انتخابی و پتانسیل اکسایش-کاهش O2/O2، OH/H2O در ۷pH=. 14

شکل ۲-۳:  نمودار فاز دی­اکسید تیتانیوم. ۱۶

شکل ۲-۴:  شماتیکی از سلول‏های واحد فاز TiO2، (الف) آناتاز، (ب) روتایل، (ج) بروکیت.. ۱۶

شکل ۲-۵: موقعیت لبه باند و شکاف انرژی برخی نیمه­هادی­ها.. ۲۳

شکل ۲-۶: مکانیزم فرآیندهای ناشی از نور تیتانیا و کاربردهای آن.   ۳۸

شکل ۲-۷: تولید فتوکاتالیستی (a)H2 یا (b)O2 در حضور واکنش­گرهای فداکار… ۴۰

شکل ۳-۱: فرآیند تهیه سل تیتانیا. ۴۹

شکل ۳-۲: فرآیند تهیه سل تیتانیا با درصدهای مولی مختلف از سریم و قلع.. ۵۰

شکل ۳-۳:  ساختار شیمیایی آلاینده رنگی. ۵۹

شکل ۴-۱: تابع توزیع اندازه ذرات سل الف) تیتانیا خالص ب) تیتانیا همراه با دوپنت سریم و قلع.. ۶۴

شکل ۴-۲: آنالیز TG-DTA ژل حاصل از سل تیتانیا. ۶۷

شکل ۴-۳: طیف XRD از نمونه خالص تیتانیا (T) و نمونه با درصدهای مختلف  Ceکلسینه شده در دمای
C˚ ۴۷۵٫ ۶۸

شکل ۴-۴: طیف XRD از نمونه خالص تیتانیا (T) و نمونه با درصدهای مختلفSn  کلسینه شده در دمای
C˚ ۴۷۵٫ ۷۱

شکل ۴-۵: طیف XRD- تیتانیای دوپ شده با درصدهای مختلف قلع و سریم- دمای C˚۴۷۵ به­مدت h1. 73

شکل ۴-۶: تجزیه فتوکاتالیستی MB در حضور پودر تیتانیا دوپ شده با درصدهای مختلف افزودنی­های قلع و سریم. ۷۵

شکل ۴-۷ : الگوی پراش اشعه ایکس تیتانیای دوپ شده با قلع و سریم (TSC6) – کلسینه شده در دماهای مختلف به­مدت h1. 78

شکل ۴-۸: تجزیه فتوکاتالیستی MB در حضور پودر تیتانیا دوپ شده با افزودنی­های قلع و سریم در دماهای مختلف. ۷۹

شکل ۴-۹: الگوی پراش اشعه ایکس تیتانیای دوپ شده با قلع و سریم (TSC6) – کلسینه شده در دماهای مختلف به­مدت h2. 80

شکل ۴-۱۰: طیف جذب UV-Vis پودر تیتانیای خالص  و همراه با دوپنت   ۸۲

شکل ۴-۱۱: نمایش شماتیک سطوح انرژی تیتانیا به همراه دوپنت فلزی   ۸۵

شکل ۴-۱۲: منحنی ۱/۲(ναh) برحسب (hν) برای نمونه­های مختلف- باند ممنوعه غیر مستقیم.. ۸۶

شکل ۴-۱۳: منحنی ۲(ναh) برحسب (hν) برای نمونه­های مختلف- باند ممنوعه مستقیم.. ۸۶

شکل ۴-۱۴: تغییرات جذب MB در حضور نمونه­های تیتانیای خالص و تیتانیای همراه با دوپنت.. ۸۷

شکل ۴-۱۵: درصد تجزیه شدن محلول MB در حضور نمونههای تیتانیای خالص و تیتانیای همراه با دوپنت تحت تابش نور مرئی.. ۸۸

شکل ۴-۱۶:  TiO2خالص-کلسینه شده دمای C˚۴۷۵ به­مدت h1. 89

شکل ۴-۱۷: تصاویر FESEM نمونه TSC6 – a) کلسینه شده در دمای C˚۴۷۵ به­مدت h1 ، b) کلسینه شده در دمای C˚۵۷۵ به­مدت h1، c) کلسینه شده در دمای C˚۷۷۵ به مدت h1، d) کلسینه شده در دمای C˚۷۷۵ به مدت h2   ۹۰

شکل ۴-۱۸: طیف EDAX – a) تیتانیای خالص b) تیتانیای دوپ شده با قلع و سریم.. ۹۱

شکل ۴-۱۹: طیف XPS از نمونه تیتانیای دوپ شده با سریم و قلع (TSC6) – اسکن در رنج وسیع.. ۹۲

شکل ۴-۲۰: طیف XPS– Ti 2P. 93

شکل ۴-۲۱: طیف XPS– Sn 3d. 94

شکل ۴-۲۲: طیف XPS– Ce 3d. 95

شکل ۴-۲۳: طیف XPS– C 1s 95

شکل ۴-۲۴: طیف XPS– O 1s 96

شکل ۴-۲۵: ایزوترم جذب– دفع نیتروژن و منحنی توزیع اندازه حفرات برای نمونه TSC6 98

شکل ۴-۲۶: آنالیز نمونه تیتانیای بدون دوپنت (FTIR) و تیتانیا همراه با دوپنت سریم و قلع (TSC6). 99

 

 

فهرست جدول­ها

عنوان                                                                                                                       صفحه

جدول ۲-۱: انرژی فاصله ترازهای برخی از فتوکاتالیست های بررسی شده در برخی مقالات.. ۱۳

جدول ۲-۲: خصوصیات آناتاز و روتایل. ۱۷

جدول۲-۳: یون­های فلزی افزوده شده به اکسید تیتانیوم و اثر آن­ها   ۳۵

جدول۲-۴: تاثیر سرعت واکنش­های کندانسیون و هیدرولیز بر سل حاصله   ۴۳

جدول ۳-۱: فهرست مواد اولیه مورد استفاده. ۴۷

جدول ۳-۲: شرایط بهینه تهیه سل. ۴۸

جدول ۳-۳: کدگذاری نمونه­ها. ۵۰

جدول ۳-۴: درصد عناصر در نمونه­های تک جزئی. ۵۱

جدول ۳-۵: درصد عناصر در نمونه­های دو جزئی. ۵۱

جدول ۳-۶:  مشخصات آلاینده رنگی. ۵۹

جدول ۴-۱: خواص فیزیکی و پارامترهای سل­های مورد استفاده. ۶۴

جدول ۴-۲: مشخصات نمونه­های تیتانیای دوپ شده با درصدهای مختلف سریم کلسینه شده در دمای C˚۴۷۵٫ ۶۹

جدول ۴-۳: مشخصات نمونه­های تیتانیای دوپ شده با درصدهای مختلف قلع کلسینه شده در دمای C˚۴۷۵ . ۷۱

جدول ۴-۴: مشخصات نمونه­های تیتانیا با دوپ همزمان قلع و سریم کلسینه شده در دمای C˚۴۷۵٫ ۷۴

جدول ۴-۵: مشخصات نمونه­های تیتانیای دوپ شده با قلع و سریم (TSC6) – کلسینه شده در دماهای مختلف به­مدت h1. 78

جدول ۴-۶: مشخصات نمونه­های تیتانیای دوپ شده با قلع و سریم (TSC6) – کلسینه شده در دماهای مختلف به­مدت h2. 81

جدول ۴-۷: مشخصات طیف­های UV-Vis و محاسبه­ی انرژی باند ممنوعه. ۸۳

 

 

فصل اول

      مقدمه


۱-۱ پیشگفتار

افزایش روز افزون آلاینده­های گازی و آبی در سال­های اخیر، منجر به توسعه­ی زمینه­های مطالعاتی و کاربردی فتوکاتالیست­ها شده است. فتوکاتالیست­ها جزء آن دسته از کاتالیست­هایی هستند که با تابش نور فعال شده و آلاینده­های موجود در هوا یا آب را به مواد کم ضرر مانند آب و دی­اکسید کربن تبدیل می­کنند. در میان تمامی فتوکاتالیست­های موجود، اکسید تیتانیوم (TiO2) به­دلیل خواص منحصر به فردی چون پایداری شیمیایی و نوری، قیمت ارزان، عدم انحلال در آب، غیر سمی بودن و … بسیار مورد توجه می­باشد.

با این حال به­دلیل قرار گرفتن گاف انرژی آن در محدوده فرابنفش کاربرد آن محدود می شود. برای غلبه بر این محدودیت، مطالعات اخیر روی افزایش بازدهی آن با استفاده از کامپوزیت­های اکسید تیتانیوم- نانو فلز، کاتالیست های الکتروشیمی، اکسید تیتانیوم ذوب شده یا کامپوزیت­های سرامیکی متخلخل معطوف شده است.

قیمت:   ۱۲۰۰۰ تومان

 

فرمت

مطلب مشابه

پایان نامه ارشد با عنوان مسئولیت مدنی دارنده و راننده وسایل نقلیه موتوری زمینی در مقابل خسارات در حقوق ایران 

مسئولیت مدنی دارنده و راننده وسایل نقلیه موتوری زمینی در مقابل خسارات در حقوق ایران  …